Worrying Impact of Artificial Intelligence and Big Data Through the Prism of Recommender Systems

Authors

  • Ljubiša Bojić Institute for Philosophy and Social Theory, University of Belgrade, Serbia https://orcid.org/0000-0002-5371-7975
  • Maja Zarić Advisor at Ministry of Culture, Republic of Serbia
  • Simona Žikić Faculty of Media and Communications, Singidunum University, Institute for Philosophy and Social Theory, University of Belgrade

DOI:

https://doi.org/10.21301/eap.v16i3.13

Keywords:

recommender systems, ai, big data, internet addiction, echo chamber

Abstract

Transfer from social to semantic web brought us to an era of algorithmic society, placing issues such as privacy, big data and AI in the spotlight. although neutral by their nature, the power of big data algorithms to impact societies became major concern outcoming with fines issued to Facebook in the US. These events were initiated by alleged breaches of data privacy connected to recommender system technology, which can provide individualized content to internet users. This paper seeks to explain recommender systems, while elaborating on their social effects, to conclude that their overall impacts might be increase in retail sales, democratization of advertising, increase in internet addictions, social polarization (echo chamber issue), and improvement of political communication. Also, more research should be deployed into low intensity addictions, as potential outcome of recommender systems, and it should be explored how they affect political participation and democracy.

Downloads

Download data is not yet available.

References

Abdollahpouri, Himan, Robin Burke and Bamshad Mobasher. 2017. „Recommender Systems as Multistakehol-der Environments”. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personaliza-tion, 347–348. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3079628.3079657.

Adamopoulos, Panagiotis, Anindya Ghose and Vilma Todri. 2018. „The Impact of User Personality Traits on Word of Mouth: TEXT-MINING Social Media Platforms”. Information Systems Research 29 (3): 612–40. https://doi.org/10.1287/isre.2017.0768.

Aggarwal, Charu C. 2016. Recommender Systems: The Textbook. Springer.

Baker, Scott, Nicholas Bloom, Steven Davis and Stephen Terry. 2020. „COVID-Induced Economic Uncerta-inty“. NBER Working Paper Series 26983: 1–16. https://doi.org/10.3386/w26983.

Balkin, Jack M. 2017. „Free Speech in the Algorithmic SOCIETY: Big Data, Private Governance, and New School Speech Regulation“. SSRN Electronic Journal 615: 1–68. https://doi.org/10.2139/ssrn.3038939.

Baumann, Fabian, Philipp Lorenz-Spreen, Igor M. Sokolov and Michele Starnini. 2020. „Modeling Echo Chambers and Polarization Dynamics in Social Networks“. Physical Review Letters 124 (4): 1–6. https://doi.org/10.1103/physrevlett.124.048301.

Błachnio, Agata, Aneta Przepiórka, Oleg Gorbaniuk, Martina Benvenuti, Adela Magdalena Ciobanu, Emre Se-nol-Durak, Mithat Durak, et al. 2019. „Cultural Correlates of Internet Addiction“. Cyberpsychology, Beha-vior, and Social Networking 22 (4): 258–63. https://doi.org/10.1089/cyber.2018.0667.

Bojić, Ljubiša and Jean-Louis Marie. 2013. „Media Addiction by Universal Indicators”. Srpska politička misao 41 (3): 183–97. https://doi.org/10.22182/spm.4132013.9.

Bojić, Ljubiša, Jean-Louis Marie and Srboran Branković. 2013. „Reception and Expression Capabilities of Me-dia Addicts in Serbia”. Kultura polisa 10 (22): 353–368.

Bozdag, Engin and Jeroen van den Hoven. 2015. „Breaking the Filter Bubble: Democracy and Design“. Ethics and Information Technology 17 (4): 249–65. https://doi.org/10.1007/s10676-015-9380-y.

Burr, Christopher, Nello Cristianini and James Ladyman. 2018. „An Analysis of the Interaction between Intel-ligent Software Agents and Human Users“. Minds and Machines 28 (4): 735–74. https://doi.org/10.1007/s11023-018-9479-0.

Cheng, Cecilia and Angel Yee-lam Li. 2014. „Internet Addiction Prevalence and Quality of (Real) Life: A Me-ta-Analysis of 31 Nations across Seven World Regions“. Cyberpsychology, Behavior, and Social Networ-king 17 (12): 755–60. https://doi.org/10.1089/cyber.2014.0317.

Chi, Xinli, Xin Hong and Xiaochen Chen. 2020. „Profiles and Sociodemographic Correlates of Internet Addic-tion in Early Adolescents in Southern China“. Addictive Behaviors 106: 106–385. https://doi.org/10.1016/j.addbeh.2020.106385.

Couldry, Nick and Alison Powell. 2014. „Big Data from the Bottom Up“. Big Data & Society 1 (2): 1–5. https://doi.org/10.1177/2053951714539277.

de Vries, Katja. 2010. „Identity, Profiling Algorithms and a World of Ambient Intelligence“. Ethics and Infor-mation Technology 12 (1): 71–85. https://doi.org/10.1007/s10676-009-9215-9.

Deahl, Erica. 2014. „Better the Data You Know: Developing Youth Data Literacy in Schools and Informal Le-arning Environments“, PhD diss., Massachusetts Institute of Technology, Cambridge, MA, USA https://dspace.mit.edu/handle/1721.1/89958

D’Ignazio, C. and R. Bhargava. 2015. „Approaches to Building Big data Literacy“. In Bloomberg Data for Go-od Exchange. New York, NY, USA.

Duke, George. 2019. „Aristotle and Natural Law“. The Review of Politics 82 (1): 1–23. https://doi.org/10.1017/s0034670519000743.

Durkee, Tony, Michael Kaess, Vladimir Carli, Peter Parzer, Camilla Wasserman, Birgitta Floderus, Alan Ap-ter, et al. 2012. „Prevalence of Pathological Internet Use among Adolescents in Europe: Demographic and Social Factors“. Addiction 107 (12): 2210–22. https://doi.org/10.1111/j.1360-0443.2012.03946.x.

Econ. 2017. „The World’s Most Valuable Resource Is No Longer Oil, but Data“. Economist. Accessed July 21, 2020. https://www.economist.com/news/leaders/21721656-data-economy-demands-newapproach-antitrust-rules-worlds-most-valuable-resource/

Emarketer. 2010. „EMarketer, Starcom MEDIAVEST GROUP UNVEIL ‘2010 Global MEDIA INTELLIGEN-CE’“. exchange4media. Accessed August 1, 2020. https://www.exchange4media.com/advertising-news/emarketerstarcom-mediavest-group-unveil-2010-global-media-intelligence-39582.html.

Emarketer. 2018. „Digital Display Ad Spending - Reports, Statistics & Marketing Trends”. Insider Intelligen-ce. Accessed August 1, 2020. https://www.emarketer.com/topics/topic/digital-display-ad-spending.

Emarketer. 2019. „Worldwide Retail Ecommerce Sales: Emarketer’s Updated Estimates and FORECAST thro-ugh 2019“. eMarketer. Accessed August 1, 2020. https://www.emarketer.com/Report/Worldwide-Retail-Ecommerce-Sales-eMarketers-Updated-Estimates-Forecast-Through-2019/2001716.

Fisk, George. 1959. „Toward a Theory of Leisure-Spending Behavior“. Journal of Marketing 24 (2): 51–57. https://doi.org/10.2307/1248848.

Floridi, Luciano. 2007. „Understanding Epistemic Relevance“. Erkenntnis 69 (1): 69–92. https://doi.org/10.1007/s10670-007-9087-5.

Ghose, Anindya and Vilma Todri. 2015. „Towards a Digital Attribution Model: Measuring the Impact of Dis-play Advertising on Online Consumer Behavior“. SSRN Electronic Journal 40 (4): 889–910. https://doi.org/10.2139/ssrn.2672090.

Goldfarb, Avi. 2013. „What Is Different about Online Advertising?”. Review of Industrial Organization 44 (2): 115–29. https://doi.org/10.1007/s11151-013-9399-3.

Guo, Lei, Jacob A. Rohde and H. Denis Wu. 2018. „Who Is Responsible for TWITTER’S Echo Chamber PRO-BLEM? Evidence from 2016 U.S. ELECTION NETWORKS“. Information, Communication & Society 23 (2): 234–51. https://doi.org/10.1080/1369118x.2018.1499793.

Harambam, Jaron, Natali Helberger and Joris van Hoboken. 2018. „Democratizing Algorithmic News Re-commenders: How to Materialize Voice in a Technologically Saturated Media Ecosystem“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2133: 1–21. https://doi.org/10.1098/rsta.2018.0088.

Helberger, Natali, Kari Karppinen and Lucia D’Acunto. 2016. „Exposure Diversity as a Design Principle for Recommender Systems“. Information, Communication & Society 21 (2): 191–207. https://doi.org/10.1080/1369118x.2016.1271900.

Helbing, Dirk. 2015. Thinking Ahead: Essays on Big Data, Digital Revolution, and Participatory Market Socie-ty. Berlin: Springer.

Hern, Alex and David Pegg. 2018. „Facebook Fined for Data Breaches in Cambridge Analytica Scandal“. The Guardian. Accessed July 10, 2018. https://www.theguardian.com/technology/2018/jul/11/facebook-fined-for-data-breaches-in-cambridge-analytica-scandal.

Hilbert, Martin. 2013. „Big Data for Development: From Information – to Knowledge Societies“. SSRN Elec-tronic Journal 1–39. https://doi.org/10.2139/ssrn.2205145.

Howard, Philip N., Bharath Ganesh, Dimitra Liotsiou, John Kelly and Camille François. 2019. „The IRA, Soci-al Media and Political Polarization in the United States, 2012–2018“. DigitalCommons@University of Neb-raska - Lincoln. Accessed August 1, 2021. https://digitalcommons.unl.edu/senatedocs/1/.

IAB Europe. 2011. „AdEx 2010 European online advertising expenditure“. IAB Europe. Accessed July 27, 2020. https://iabeurope.eu/uncategorized/iab-europe-reports-european-advertising-spend-2008-2013/.

Iliadis, Andrew and Federica Russo. 2016. „Critical Data Studies: An Introduction“. Big Data & Society 3 (2): 1–7. https://doi.org/10.1177/2053951716674238.

Internetworldstats. 2020. „Internet Growth STATISTICS 1995 to 2021 - the Global VILLAGE ONLINE“. Inter-net World Stats. Accessed August 1, 2021. https://www.internetworldstats.com/emarketing.htm.

Isaak, Jim and Mina J. Hanna. 2018. „User Data Privacy: Facebook, Cambridge Analytica, and Privacy Protec-tion“. Computer 51 (8): 56–59. https://doi.org/10.1109/mc.2018.3191268.

Kawabe, Kentaro, Fumie Horiuchi, Marina Ochi, Yasunori Oka and Shu-ichi Ueno. 2016. „Internet Addiction: Prevalence and Relation with Mental States in Adolescents“. Psychiatry and Clinical Neurosciences 70 (9): 405–12. https://doi.org/10.1111/pcn.12402.

Kitchin, Rob and Gavin McArdle. 2016. „What Makes Big Data, Big Data? Exploring the Ontological Charac-teristics of 26 Datasets“. Big Data & Society 3 (1): 1–10. https://doi.org/10.1177/2053951716631130.

Kitchin, Rob. 2013. „Big Data and Human Geography“. Dialogues in Human Geography 3 (3): 262–67. https://doi.org/10.1177/2043820613513388.

Klapdor, Sebastian. 2013. Effectiveness of Online Marketing Campaigns an Investigation into Online Mul-tichannel and Search Engine Advertising. Wiesbaden: Springer.

Koene, Ansgar, Elvira Perez, Christopher James Carter, Ramona Statache, Svenja Adolphs, Claire O’Malley, Tom Rodden and Derek McAuley. 2015. „Ethics of Personalized Information Filtering“. Internet Science 123–132. https://doi.org/10.1007/978-3-319-18609-2_10.

Konow, Roberto, Wayman Tan, Luis Loyola, Javier Pereira and Nelson Baloian. 2010. „Recommender System for Contextual Advertising in Iptv Scenarios“. The 2010 14th International Conference on Computer Supported Cooperative Work in Design, Shanghai, China, 617–622. https://doi.org/10.1109/cscwd.2010.5471900.

Kosinski, M., D. Stillwell and T. Graepel. 2013. „Private Traits and Attributes Are Predictable from Digital Records of Human Behavior“. Proceedings of the National Academy of Sciences 110 (15): 5802–5805. https://doi.org/10.1073/pnas.1218772110.

Lam, Lawrence T. 2015. „Parental Mental Health and Internet Addiction in Adolescents“. Addictive Behaviors 42: 20–23. https://doi.org/10.1016/j.addbeh.2014.10.033.

Lambiotte, Renaud and Michal Kosinski. 2014. „Tracking the Digital Footprints of Personality“. Proceedings of the IEEE 102 (12): 1934–39. https://doi.org/10.1109/jproc.2014.2359054.

Laney, D. 2020. „3D data management: Controlling data volume, velocity and variety“. Meta Group. Accessed July 27, 2020. http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-VolumeVelocity-and-Variety.pdf.

Lewis, Rhys. 2020. „Internet Sales as a Percentage of Total Retail Sales (Ratio) (%)“. Office for National Stati-stics. Accessed July 22, 2020. https://www.ons.gov.uk/businessindustryandtrade/retailindustry/timeseries/j4mc/drsi.

Li, Yung-Ming and Ya-Lin Shiu. 2012. „A Diffusion Mechanism for Social Advertising over Microblogs“. Decision Support Systems 54 (1): 9–22. https://doi.org/10.1016/j.dss.2012.02.012.

Liu-Thompkins, Yuping. 2019. „A Decade of Online Advertising Research: What We Learned and What We Need to Know“. Journal of Advertising 48 (1): 1–13. https://doi.org/10.1080/00913367.2018.1556138.

Mai, Jens-Erik. 2016. „Big Data Privacy: The Datafication of Personal Information“. The Information Society 32 (3): 192–199. https://doi.org/10.1080/01972243.2016.1153010.

Mancic, Zeljko. 2010. „Cyberpiracy and Morality: Some Utilitarian and Deontological Challenges“. Filozofija i drustvo 21 (3): 103–117. https://doi.org/10.2298/fid1003103m.

Michael, Katina and Keith W. Miller. 2013. „Big Data: New Opportunities and New Challenges“. Computer 46 (6): 22–24. https://doi.org/10.1109/mc.2013.196.

Milano, Silvia, Mariarosaria Taddeo and Luciano Floridi. 2020. „Recommender Systems and Their Ethical Challenges“. AI & Society 35 (4): 957–967. https://doi.org/10.1007/s00146-020-00950-y.

Montag, Christian, Éilish Duke and Martin Reuter. 2017. „A Short Summary of Neuroscientific Findings on Internet Addiction“. In Internet Addiction. Studies in Neuroscience, Psychology and Behavioral Economics., edited by Christian Montag and Martin Reuter, 209–218. Cham: Springer. https://doi.org/10.1007/978-3-319-46276-9_12.

Patel, Archana and Sarika Jain. 2019. „Present and Future of Semantic Web Technologies: A Research State-ment“. International Journal of Computers and Applications 43 (5): 413–422. https://doi.org/10.1080/1206212x.2019.1570666.

Prasetya, Hafizh A. and Tsuyoshi Murata. 2020. „A Model of Opinion and Propagation Structure Polarization in Social Media“. Computational Social Networks 7 (1): 1–10. https://doi.org/10.1186/s40649-019-0076-z.

Rashid, Al Mamunur, Istvan Albert, Dan Cosley, Shyong K. Lam, Sean M. McNee, Joseph A. Konstan and John Riedl. 2002. „Getting to Know You“. Proceedings of the 7th international conference on Intelligent user in-terfaces - IUI ‘02 127–134. https://doi.org/10.1145/502716.502737.

Resnick, Paul and Hal R. Varian. 1997. „Recommender Systems“. Communications of the ACM 40 (3): 56–58. https://doi.org/10.1145/245108.245121.

Reviglio, Urbano. 2017. „Serendipity by Design? How to Turn from Diversity Exposure to Diversity Experien-ce to Face Filter Bubbles in Social Media“. Internet Science 281–300. https://doi.org/10.1007/978-3-319-70284-1_22.

Ricci, Francesco, Lior Rokach and Bracha Shapira. 2011. „Introduction to Recommender SYSTEMS HAND-BOOK“. Recommender Systems Handbook 1–35. https://doi.org/10.1007/978-0-387-85820-3_1.

Rosenkrans, Ginger. 2009. „The Creativeness and Effectiveness of Online Interactive Rich Media Advertising“. Journal of Interactive Advertising 9 (2): 18–31. https://doi.org/10.1080/15252019.2009.10722152.

Schuilenburg, Marc and Rik Peeters. 2021. The Algorithmic Society: Technology, Power, and Knowledge. Lon-don: Routledge.

Statista. 2020. „Biggest Companies in the World by Market Cap 2020“. Statista. Accessed May 31, 2020. https://www.statista.com/statistics/263264/top-companies-in-the-world-by-market-value/.

Sutikno, Tole, Lina Handayani, Deris Stiawan, Munawar Agus Riyadi and Imam Much Ibnu Subroto. 2016. „WhatsApp, Viber and Telegram Which Is Best for Instant Messaging?”. International Journal of Electri-cal and Computer Engineering (IJECE) 6 (3): 909–914. https://doi.org/10.11591/ijece.v6i3.pp909-914.

Taddeo, Mariarosaria and Luciano Floridi. 2018. „How Ai Can Be a Force for Good“. Science 361 (6404): 751–752. https://doi.org/10.1126/science.aat5991.

Vosoughi, Soroush, Deb Roy and Sinan Aral. 2018. „The Spread of True and False News Online“. Science 359 (6380): 1146–1151. https://doi.org/10.1126/science.aap9559.

Wang, Yilun and Michal Kosinski. 2018. „Deep Neural Networks Are More Accurate than Humans at Detec-ting Sexual Orientation from Facial Images“. Journal of Personality and Social Psychology 114 (2): 246–257. https://doi.org/10.1037/pspa0000098.

Weinstein, Aviv and Michel Lejoyeux. 2010. „Internet Addiction or Excessive Internet Use“. The American Journal of Drug and Alcohol Abuse 36 (5): 277–83. https://doi.org/10.3109/00952990.2010.491880.

White House. 2014. Big data: Seizing opportunities, preserving values. Executive Office of the President. Washington, DC.

Yahoo. 2010. „Das Web als zentrales Element für die Kaufentscheidung im Einzelhandel“. Yahoo Research. Accessed July 21, 2020. https://docplayer.org/8422159-Das-web-als-zentrales-element-fuer-die-kaufentscheidung-im-einzelhandel-yahoo-insights-juni-2010.html.

Young, Kimberly S. 1998. „Internet Addiction: The Emergence of a New Clinical Disorder“. CyberPsychology & Behavior 1 (3): 237–244. https://doi.org/10.1089/cpb.1998.1.237.

Zook, Matthew, Solon Barocas, Danah Boyd, Kate Crawford, Emily Keller, Seeta Peña Gangadharan, Alyssa Goodman, et al. 2017. „Ten Simple Rules for Responsible Big Data Research“. PLOS Computational Bio-logy 13 (3): 1–10. https://doi.org/10.1371/journal.pcbi.1005399.

Zwitter, Andrej. 2014. „Big Data Ethics“. Big Data & Society 1 (2): 1–6. https://doi.org/10.1177/2053951714559253.

Downloads

Published

2021-11-16

How to Cite

Bojić, Ljubiša, Maja Zarić, and Simona Žikić. 2021. “Worrying Impact of Artificial Intelligence and Big Data Through the Prism of Recommender Systems”. Etnoantropološki Problemi Issues in Ethnology and Anthropology 16 (3):935–957. https://doi.org/10.21301/eap.v16i3.13.